Enhanced nitric oxide inactivation and protein nitration by reactive oxygen species in renal insufficiency.

نویسندگان

  • Nosratola D Vaziri
  • Zhenmin Ni
  • Fariba Oveisi
  • Kaihui Liang
  • Raj Pandian
چکیده

Chronic renal failure (CRF) is associated with oxidative stress which promotes production of reactive carbonyl compounds and lipoperoxides leading to the accumulation of advanced glycation and lipoxidation end products. Reactive oxygen species (ROS) avidly reacts with nitric oxide (NO) producing cytotoxic reactive nitrogen species capable of nitrating proteins and damaging other molecules. This study tested the hypothesis that CRF results in enhanced ROS-mediated NO inactivation and protein nitration which can be ameliorated with antioxidant therapy. Male Sprague Dawley rats were randomized to CRF (5/6 nephrectomy) and sham-operated controls and fed either a regular diet (vitamin E, 40 U/Kg food) or an antioxidant-fortified diet (vitamin E, 5000 U/Kg food) for 6 weeks. Blood pressure, plasma malondialdehyde (MDA), tissue NO synthase (NOS) isoforms, tissue nitrotyrosine (the footprint of NO interaction with ROS), and vascular tissue NO production were determined. CRF resulted in marked elevations of blood pressure, plasma MDA, and tissue nitrotyrosine abundance, but did not change plasma L-arginine level. This was coupled with depressed vascular tissue NO production and reduced immunodetectable NOS proteins in the vascular, renal, and cardiac tissues. Antioxidant therapy ameliorated the CRF-induced hypertension, improved vascular tissue NO production, lowered tissue nitrotyrosine burden, and reversed downregulations of NOS isoforms. In contrast, antioxidant therapy had no effects in the controls. CRF is associated with oxidative stress which promotes NO inactivation by ROS leading to functional NO deficiency, hypertension, and widespread accumulation of protein nitration products. Amelioration of oxidative stress by high-dose vitamin E enhances NO availability, improves hypertension, lowers protein nitration products, and increases NOS expression and vascular NO production in CRF animals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts.

Inflammatory processes in chronic rejection remain a serious clinical problem in organ transplantation. Activated cellular infiltrate produces high levels of both superoxide and nitric oxide. These reactive oxygen species interact to form peroxynitrite, a potent oxidant that can modify proteins to form 3-nitrotyrosine. We identified enhanced immunostaining for nitrotyrosine localized to tubular...

متن کامل

Inactivation of extracellular superoxide dismutase contributes to the development of high-volume hypertension.

OBJECTIVES Extracellular superoxide dismutase (ecSOD) lowers superoxide anions and maintains vascular nitric oxide level. We studied the function of ecSOD in high-volume hypertension induced by the 1-kidney-1-clip model in wild-type, ecSOD-/- mice, and endothelial nitric oxide synthase (eNOS)-/- mice. METHODS AND RESULTS The 1-kidney-1-clip model resulted in impaired endothelium-dependent rel...

متن کامل

TNF-alpha potentiates protein-tyrosine nitration through activation of NADPH oxidase and eNOS localized in membrane rafts and caveolae of bovine aortic endothelial cells.

A major source of reactive oxygen species (ROS) in endothelial cells is the NADPH oxidase enzyme complex. The selective distributions of any enzyme within cells have important implications in regulating enzyme effectiveness through facilitation of access to local substrates and/or product targets. Because membrane rafts provide a spatially preferable environment for a variety of enzyme systems,...

متن کامل

TNF- potentiates protein-tyrosine nitration through activation of NADPH oxidase and eNOS localized in membrane rafts and caveolae of bovine aortic endothelial cells

Yang B, Rizzo V. TNFpotentiates protein-tyrosine nitration through activation of NADPH oxidase and eNOS localized in membrane rafts and caveolae of bovine aortic endothelial cells. Am J Physiol Heart Circ Physiol 292: H954–H962, 2007. First published October 6, 2006; doi:10.1152/ajpheart.00758.2006.—A major source of reactive oxygen species (ROS) in endothelial cells is the NADPH oxidase enzyme...

متن کامل

The Lungmotor for adults.

mechanical ventilation a contributing factor? Am J Respir Crit Care Med 1998; 157:1721–5 3. Chevion M, Berenshtein E, Stadtman ER: Human studies related to protein oxidation: Protein carbonyl content as a marker of damage. Free Radic Res 2000; 33(suppl):S99–108 4. Stadtman ER, Levine RL: Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 2003; 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hypertension

دوره 39 1  شماره 

صفحات  -

تاریخ انتشار 2002